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Theory of odd-frequency pairings on a quasi-one-dimensional lattice in the Hubbard model
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In order to clarify whether the odd-frequency superconductivity can be realized or not, we study a quasi-
one-dimensional triangular lattice in the Hubbard model using the random-phase approximation and the fluc-
tuation exchange approximation. We find that odd-frequency spin-singlet p-wave pairing can be stabilized on

a quasi-one-dimensional isosceles triangular lattice.
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I. INTRODUCTION

It is known that two electrons form Cooper pairs with gap
function Aglgz(isn,k) in superconductors. In general, the gap
function depends on the Matsubara frequency ¢, the combi-
nation of spins o; and o, and the momentum k. In accor-
dance with the Fermi-Dirac statistics, the sign of the gap
function is reversed by the exchange of two electrons:
Aglgz(ign,k)=—A02(,1(—is,1,—k). Based on the symmetrical
properties combinations of three dependences, symmetries of
the gap functions can be classified into four groups; (i) even
parity in Matsubara frequency space (even frequency), spin
singlet, and even parity in momentum space (even parity)
labeled as ESE pairing state, (ii) even-frequency spin-triplet
odd-parity (ETO) pairing state, (iii) odd-frequency spin-
singlet odd-parity (OSO) pairing state, and (iv) odd-
frequency spin-triplet even-parity (OTE) pairing state. Al-
most all of the superconductors including high-7- cuprates
belong to ESE pairing state. ETO pairing state is realized in
some special superconductors such as Sr,RuO, or UPt;. In
contrast to these even-frequency pairings, odd-frequency
pairings are not familiar.

In 1974, the possibility of realizing the odd-frequency
pairing state was first proposed by Berezinskii! in the context
of *He, where the odd-frequency spin-triplet hypothetical
pairing was discussed. After that, Vojta and Dagotto? pointed
the possible realization of odd-frequency spin-triplet s wave
(OTE pairing state) on a triangular lattice in the Hubbard
model. Recent detailed calculation by Yada® has supported
this result. Balatsky and Abrahams*® proposed an odd-
frequency spin-singlet p-wave pairing (OSO pairing state).
Odd-frequency pairing has been studied on the Kondo lattice
model.®8 There are some experimental reports,”!? which are
consistent with the realization of the odd-frequency spin-
singlet p-wave superconducting state (OSO pairing state) in
Ce compounds.”!! These studies have addressed the realiza-
tion of odd-frequency energy-gap function in bulk.

It has been clarified recently that odd-frequency pairing
correlation, i.e., pair amplitude is generated in inhomoge-
neous system like superconducting junctions'>™'7 or vortex
core.'®1 It has been pointed out that OTE pair amplitude is
induced in ferromagnet/superconductor junctions?*2® and
diffusive normal metal/spin-triplet odd-parity superconductor
junctions.'>16

Stimulated by these pre-existing works, it is very timely
to study realization of odd-frequency energy-gap function in
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bulk system. In this paper, we focus on the superconductivity
on a quasi-one-dimensional triangular lattice. In order to
clarify the dominant pairing state there, we solve the linear-
ized Eliashberg’s equation in the Hubbard model using the
random-phase approximation (RPA) and the fluctuation ex-
change (FLEX) approximation.?’-%°

We clarify that odd-frequency spin-singlet p wave be-
comes dominant pairing on a quasi-one-dimensional triangu-
lar lattice. In particular, this pairing becomes prominent on
an isosceles triangular lattice due to geometrical frustration
where spin-singlet d-wave pairing is seriously suppressed.

II. MODEL AND FORMULATION

We start with a single-band Hubbard model on an aniso-
tropic triangular lattice as shown in Fig. 1, where 1,, t,, and ¢,
are transfer integrals along x, y, and diagonal directions, re-
spectively.

The Hamiltonian is given by

H= 2 (tijc;.cj(,+ HC) + 2 Un”nil’ (1)
(i.j)o i

where 7;; denotes the transfer integral between two sites i and
j. {i,j) is the combination of nearest and second-nearest
neighbors. ¢! (c;,) and n;,=c]c; are creation (annihilation)
and number operators, respectively. U is the on-site Coulomb
repulsion. The band dispersion is given by

g =~ 2t cos k, — 2t cos k, — 21, cos(k, + k). (2)

In this study, the number of electrons per site is fixed to unity
(half filling).
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X

FIG. 1. A two-dimensional triangular lattice with transfer inte-

grals 1,, t,, and 1,.
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In this paper, we calculate the Green’s function G(ig,,k)
in two different ways; using (i) the RPA and (ii) the FLEX
approximation.

(i) In the RPA, the Green’s function is given by
Glie, k)=(is,— e +m)~', where g, is the Matsubara fre-
quency of fermion given by &,=(2n—1)#T with an integer n
and u is the chemical potential. Using the Green’s function,
the irreducible susceptibility is obtained as

T
Xoli®,,q) =— z_vz Glis,.k)Glie, +iw,k+q), (3)
nk

where w,, is the Matsubara frequency of boson given by
w,,=2maT with an integer m and N is the number of sites.
The spin susceptibility is given by

. XO(lwm?q)
q) = —Xoomdl 4
o) = 2 et @

and the charge susceptibility is given by

XO(iwm’q)
1+ Uxoliw,.q)

(ii) In the FLEX approximation, first the bare Green’s
function Gy(ie,,k)=(ie,—ex+u)"" is calculated. By substi-
tuting it into the Green’s function in Eq. (3), we obtain the
irreducible susceptibility. The spin and charge susceptibilities
are given by Egs. (4) and (5), respectively. Using the suscep-
tibilities, the effective interaction is given by

Xiw,,q) = (5)

. 3 . 1 : :

(6)

Then, we calculate the self-energy

S(i6,k) = 3V, (i0,,0)Glis, ~ 0, k=q). ()
m,q

After using the Dyson equation
G \(ie,.k) = Gy '(ie,. k) — S(ie, . k) (8)

we obtain the new Green’s function. The self-consistent it-
erations are repeated until the sufficient convergence is at-
tained. Thus, we obtain the Green’s function in which the
self-energy is taken into account.

Using the Green’s function, the spin susceptibility, and the
charge susceptibility obtained in the RPA or the FLEX ap-
proximation, we solve the linearized Eliashberg’s equation.
The effective pairing interactions for spin-singlet and spin-
triplet channel are given by

3 1
V;(iwm»q) =U+ EUZXs(iwm’q) - 5U2Xc(iwqu)’ (9)

1 1
VZ(iwm’q) == 5U2Xs(iwm’q) - EUZXC(iwm’q)’ (10)

respectively. By substituting them into the linearized Eliash-
berg’s equation for spin-singlet (spin-triplet) channel
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FIG. 2. (Color online) ¢, dependence of \ for each pairing state,

fixing #,=1,, obtained by the RPA with §,=0.97 and 7/1,=0.04.

T
M(ig, k) =— — >, V:D(ig, — i,k —k')Glig,.k')G(- ie,,

mk'
-k A(ie, k'), (11)

the gap function A(ig,.k) and eigenvalue N\ are obtained.
This gap function A(ig,,k) is an eigenfunction of linearized
Eliashberg’s equation. In other words, the magnitude of it is
meaningless. Hereafter, a norm of the gap function A(ie,,k)
is normalized [Z, ;|A(ie,,k)|?=1]. Superconducting transi-
tion temperature 7T~ corresponds to the temperature where A\
reaches unity. Thus, we consider that the larger the value of
N\ becomes, the more stable the superconductivity becomes.
In this paper, we take N=N, X N, =128 X 64 k-point meshes.
The Matsubara frequencies €, and w,, have values from
—(2N,-1)wT to 2N,—1)#T and from —2N, =T to 2N,.7T,
respectively, with N.=2048.

III. RESULT

First, we study superconducting state on a quasi-one-
dimensional triangular lattice based on the RPA. In our
model, a quasi-one-dimensional triangular lattice is repre-
sented by choosing the values of 7, and #, much smaller than
that of 7,. The quasi-one-dimensional direction is parallel to x
axis.

2 T T
\\ ESE ——
\ ETO ----
R 0SO ———-
\ OTE

FIG. 3. (Color online) Temperature dependence of N\ for each
pairing state by the RPA with ¢,/1,=1,/1,=0.1 and U/t,=1.6.
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FIG. 4. (Color online) Momentum dependences of the gap func-
tions for (a) ESE and (b) OSO pairing state by the RPA with 1,/1,
=t,/t,=0.1, U/t,=1.6 and T/t,=0.06, where the dashed and solid
lines and the arrows represent the nodes of the gaps, the Fermi
surfaces, and nesting vectors Q= (1, 7/2), respectively.

In order to clarify how symmetry of gap function depends
on the dimension of the lattice, we gradually change the
lattice structure varying f, and f, from a two-dimensional
regular triangular one (tx='ty) to a quasi-one-dimensional tri-
angular one (¢,>1,). Here, we choose #,=1, for simplicity. In
this case, the lattice structure is an isosceles triangular one, in
which spin frustration in the directions of 7, and 7, exists. A
of each pairing state changes as shown in Fig. 2, where
Stoner factor (S,=Uxy™) is fixed to 0.97 by tuning the value
of U. Here, xy™ denotes the maximum value of x,. We see
that OSO pairing state is dominant on a quasi-one-
dimensional triangular lattice (¢,/t,~0.1), while ESE pairing
state is dominant in almost all of the region. Hereafter, we
focus on OSO pairing state.

In order to study details of the OSO pairing state on a
quasi-one-dimensional triangular lattice, we calculate the
temperature dependence of A\ for 1,/t,=t,/1,=0.1 and U/t,
=1.6 with the value of 7/¢, running from 0.05 to 0.20. As
shown in Fig. 3, A of OSO pairing state increases much
above unity at low temperatures for U/t,=1.6, where the
Stoner factor S, becomes almost unity. The value of S,
reaches unity at 7/¢,~ 0.05. This means that the OSO pairing
state can be realized near the spin-density wave (SDW)
phase. As in the case of ESE pairing, OSO pairing is medi-
ated by antiferromagnetic spin fluctuation?® since the super-
conductivity appears near the SDW phase.

The momentum dependences of the gap functions for the
ESE and the OSO pairing states on a quasi-one-dimensional

[1/£] 25
25
20

qx n 0

FIG. 5. Momentum dependence of the spin susceptibility by the
RPA with #,/t,=t,/t,=0.1, U/t,=1.6, and T/t,=0.06.
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FIG. 6. (Color online) #, dependence of \ for each pairing state
by the RPA with #,/£,=0.3, §,=0.995 and T/1,=0.05.

triangular lattice with fixed Matsubara frequency ie,=iwT
are shown in Figs. 4(a) and 4(b), respectively, where the
dashed and solid lines and the arrows represent the nodes of
the gaps, the Fermi surfaces, and nesting vectors Q
=(ar,/2), respectively. We find that the momentum depen-
dences of the ESE and the OSO gap functions can be ap-
proximated by cos k, (d wave) and sin k, (p wave), respec-
tively. Here, we denote d(p) wave since this gap function
changes sign four (two) times on the Fermi surface.3%3! It is
noted that this p wave has no nodes on the Fermi surface in
the case of quasi-one-dimensional lattice (550.6). The
shape of the Fermi surface becomes two lines with k,
=+ 7/2 in the absence of 7, and #,. These two lines are bent
into an S shape by introducing ¢, and #,. It is noteworthy that
these two “Fermi lines” are perfectly nested with a vector
Q=(m,m/2) at half filling with ¢,=¢,. Because of this, the
spin susceptibility x,(iw,,,q) at g=(,7/2) becomes strong
as shown in Fig. 5.

It is known that on a two-dimensional triangular lattice,
the antiferromagnetic fluctuation works equally in the direc-
tions of x and y axes. Therefore, in real space, neighboring
two electrons in these directions with antiparallel spins make
a Cooper pair. As a result, spin-singlet d,>_,-wave (ESE)
becomes dominant. On the other hand, the antiferromagnetic
fluctuation along x axis becomes dominant on a quasi-one-

0.03

4 2 0 2
€/t O/t

FIG. 7. (Color online) Matsubara frequency dependences of the
gap function Aggp(ie,,k) at k=(7/2,0) and the effective pairing
interaction V. (iw,,,Q) at Q@=(,m/2) for spin-singlet channel by
the RPA with ,/1,=1,/1,=0.1, §,=0.95, and T/1,=0.05.
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dimensional triangular lattice. Then neighboring two elec-
trons along x axis with antiparallel spins make a Cooper pair.
As a result, spin-singlet d wave (ESE) and p, wave (OSO)
make pairs in x direction.

The gap function for ESE pairing state has nodes on the
Fermi surfaces, while that for OSO pairing state has no
nodes on the Fermi surfaces, which can be called full gap, in
momentum space. This point is relevant to following fact
that OSO pairing state dominates over ESE pairing state for
sufficiently small magnitude of 7, and 1.

We also explore the lattice with 7,# 1, to clarify that z,
=t, is an indispensable condition for the realization of OSO
pairing state. We gradually change the value of 7,, fixing
t,/t,=0.3. The resulting N of each pairing state changes as
shown in Fig. 6. We see that OSO pairing state is relatively
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enhanced compared to ESE pairing state especially in the
case of #,=1,. This result is robust against changing value of
t,. The condition with #,=1, corresponds to geometrical frus-
tration, which suppresses the antiferromagnetic fluctuation in
these directions.

In the following, we study OSO pairing state focusing on
Matsubara frequency dependence. Matsubara frequency de-
pendences of the gap function Aggg(ie,,k) for OSO pairing
state at k=(7/2,0) and the effective pairing interaction
Vi(iw,,,0) with Q=(m,7/2) for spin-singlet channel on a
quasi-one-dimensional triangular lattice are shown in Fig. 7.
Near the SDW phase, V:(iw,,,Q) has a sharp peak at w,,
=0 in Matsubara frequency space. After a simple transforma-
tion of the linearized Eliashberg’s Eq. (11), we obtain follow-
ing relation:

> Ve, —ig,k —k')Gigk')G(~ ig,m—k')Alie,nk" ) Alis,.k)

T nomkk’
N=——

(12)

N E |A(i8mk)|2
nk

In Eq. (12), 3,/AGe,. k)% Glis,, k')G(-is,,,~k'), and
Vi(ie,—ie,.k—k') are always positive. Then negative (posi-
tive) sign of Aggolie,,, k') Apsolie, k) makes positive (nega-
tive) contribution to \. Due to the sharp peak of V:(iw,,,Q)
at w,,=0, pair scattering from ¢, to g, with g,,=¢, makes
main contribution to N. The gap function Apgp(ic,,k)
changes sign in the process of scattering from k' to k through
the nesting vector Q=(,7/2), which makes the main con-
tribution to A, in the momentum summation of the numera-
tor. However, scattering process for w,, 70 suppresses the
value of N since gap functions with positive and negative
sign of g, have opposite signs each other in OSO pairing.
Next we calculate the value of N with the FLEX approxi-
mation in order to reveal how the above results is changed by
the self-energy. As in the case of the RPA, to clarify how the
superconducting state depends on the dimensionality of the
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FIG. 8. (Color online) t, dependence of N for each pairing state

fixing #,=t, by the FLEX approximation with §,=0.97 and T/t,
=0.02.

lattice, we gradually change the lattice structure from a two-
dimensional regular triangular one (z,=t,) into a quasi-one-
dimensional triangular one (z,>1,), fixing #,=t,. N\ of each
pairing state changes as shown in Fig. 8. Compared to the
result of the RPA in Fig. 2, the values of N\ are reduced.
However, similar to the case of the RPA for ty/thO.l, the
OSO pairing state still remains dominant.

We calculate the temperature dependence of N for ¢,/¢,
=t,/1,=0.01 with the value of T/¢, running from 0.001 to
0.20. As shown in Fig. 9, the value of N for OSO pairing
reaches up to 0.8. The present value of \ is considerably high
as compared to the corresponding values studied by the
FLEX approximation in other strongly correlated
systems.?>=¢ Up to now, only the values of \ obtained for
high-T~ cuprates and exotic systems with disconnected
Fermi surface exceed over the present value.>’~*> Momentum

1

ESE —

0.8]; ETO ----
\ 0SO —-
0.6} \ OTE

< AN
0.4+ S

FIG. 9. (Color online) Temperature dependence of N\ for each
pairing state by the FLEX approximation with #,/,=1,/t,=0.01 and
U/t,=2.5.
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FIG. 10. (Color online) Matsubara frequency dependences of
Glie,,k)G(-ig,,—k) at k=(/2,0) by the RPA and the FLEX ap-
proximation with #,/1,=1,/1,=0.1, §,=0.95, and T/7,=0.05.

and Matsubara frequency dependences of gap function are
qualitatively similar to the one obtained by the RPA. As re-
gards the Matsubara frequency dependence, there is only
quantitative difference.

Matsubara  frequency dependences of value of
Gl(ie,,k)G(~is,,—k) at k=(7/2,0) obtained by the RPA and
the FLEX approximation, which directly affect the value of
\ as noted in Eq. (12), are shown in Fig. 10. G(ig,,k)G(
—ig,,—k) for the FLEX approximation is smaller than that
for the RPA since imaginary part of self-energy corresponds
to damping of quasiparticles. Thus, the presence of self-
energy decreases the value of \ in the FLEX approximation.

Matsubara frequency dependences of the normalized ef-
fective pairing interactions V:(iw,,Q)/V:(0,Q0) at Q
=(,/2) for spin-singlet channel in the RPA and the FLEX
approximation are shown in Fig. 11. A peak width of
Vi(iw,,,Q) for the FLEX approximation is broader than that
for the RPA in Matsubara frequency space due to the pres-
ence of the self-energy. This broadness of the peak width of
the effective pairing interaction V:(iw,,,Q) relatively en-
hances the value of V:(iw,,,Q) with w, #0. Subsequently,
the scattering processes from positive g, to negative ¢, rela-
tively increase the summation of Matsubara frequency in the
numerator of Eq. (12). Thus, the OSO pairing state is sup-
pressed. On the other hand, for the ESE pairing state, the
above scattering processes do not suppress the value of A\
since the gap function has always same sign in Matsubara
frequency space. As a result, the OSO pairing is suppressed
more significantly by the self-energy as compared to the ESE
pairing. This is consistent with the fact that the critical value
of t,/t, where OSO pairing dominates over ESE pairing in
the RPA (z,/t,~0.2) is reduced to ~0.1 by using the FLEX
approximation as shown in Figs. 2 and 8.

As shown above, the resulting value of N does not reach
unity due to the self-energy effect based on the FLEX ap-
proximation. However, in the FLEX approximation, vertex
corrections are not taken into account. The roles of vertex
corrections have been studied in the context of high-7~ cu-
prates, where ESE (d-wave) pairing is realized. It has been
shown that the value of N in the presence of vertex correc-
tions is larger than that within the FLEX approximation.*+43
This is because the effective pairing interaction is enhanced

PHYSICAL REVIEW B 79, 174507 (2009)
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FIG. 11. (Color online) Matsubara frequency dependences of
the normalized effective pairing interactions V: (iw,,,Q)/V:(0,Q) at
Q=(m,m/2) for spin-singlet channel by the RPA and the FLEX
approximation with #,/t,=1,/t,=0.1, §,=0.95, and T/1,=0.05.

by the vertex corrections. We can expect that the value of A
reaches unity if we consider the vertex corrections in the
present calculation.

IV. CONCLUSION

We have studied symmetry of gap functions on a quasi-
one-dimensional triangular lattice in the Hubbard model by
solving the linearized Eliashberg’s equation based on the
RPA and the FLEX approximation. Surprisingly, odd-
frequency spin-singlet p, wave (OSO pairing state), which is
not familiar, is the most dominant near the SDW phase. The
OSO pairing state becomes prominent on an isosceles trian-
gular lattice (¢,=1,), where the geometrical frustration is the
most significant. Even if the self-energy is introduced by the
FLEX approximation, above conclusions are not changed.

The OSO pairing state is induced in the following way. In
real space, neighboring two electrons with antiparallel spins
make a Cooper pair mediated by the antiferromagnetic spin
fluctuation near the SDW phase. The value of the effective
pairing interaction V;(iw,,,Q) for spin-singlet channel at the
nesting vector Q=(,7/2) has a sharp positive peak at w,,
=0 in the Matsubara frequency space. In this case, pair scat-
tering with conserving Matsubara frequency makes major
contribution to the value of A. Therefore, sign inversion of
gap function through the nesting vector Q=(,7/2) in the
momentum space enhances the value of \ in Eq. (12) be-
cause the effective pairing interaction for spin-singlet chan-
nel has a positive value. This favors p, wave, which is full
gap on the Fermi surface. In accordance with Fermi-Dirac
statistics, spin-singlet p, wave can be interpreted as odd-
frequency pairing. These results in this paper suggest possi-
bility of odd-frequency superconductivity realizing in bulk
system.

In the present paper, only on-site Coulomb interaction is
considered. In the presence of off-site Coulomb interaction,
it is known that SDW and CDW can compete with each other
in quasi-one-dimensional superconductor. In that case, com-
petition between even-frequency spin-triplet f-wave pair and
even-frequency spin-singlet d-wave pair has been pointed by
several theories.3031:46-48 [t i5 a challenging issue to consider
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the possible realization of odd-frequency pairing in the pres-
ence of off-site Coulomb interaction.

Besides this problem, to clarify the superconducting prop-
erties of odd-frequency superconductor is an important prob-
lem. Since phase-sensitive probes, e.g., tunneling and Jo-

PHYSICAL REVIEW B 79, 174507 (2009)

sephson effects, are crucial to identify the pairing symmetry
in unconventional superconductors,*=! similar studies on
odd-frequency superconductors become important.!>>2- It
is necessary to calculate temperature dependence of energy-
gap function to reveal the superconducting properties.
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